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Abstract 
In this paper we describe three evolutionary 
approaches to the vehicle routing problem. In our 
first approach we use a standard genetic 
algorithm whilst in the second we use a 
coevolutionary model. The third approach 
concerns the extension of the previous ones 
through the inclusion of heuristics. We present 
and compare the experimental results achieved 
by the algorithms. 

1 INTRODUCTION 

The Vehicle Routing Problem (VRP) is a complex 
combinatorial optimization problem, which can be seen as 
a merge of two well-known problems: the Traveling 
Salesperson Problem (TSP) and the Bin Packing Problem 
(BPP). It can be described as follows: given a fleet of 
vehicles with uniform capacity, a common depot, and 
several costumer demands, find the set of routes with 
overall minimum route cost which service all the 
demands. 

VRP is NP-Hard, and therefore difficult to solve. The fact 
that VRP is both of theoretical and practical interest (due 
to its real world applications), explains the amount of 
attention given to the VRP by researchers in the past 
years.  

Due to the nature of the problem it is not viable to use 
exact approaches for large instances of the VRP (for 
instances with few nodes the branch and bound technique 
(Fisher, 1994) is well suited and gives the best possible 
solution).  

Most approaches to the VRP rely on heuristics and give 
approximate solutions to the problem (e.g. heuristic based 
(Clark, 1964) (Fisher, 1981) (Taillard, 1993) 
(Kindervater, 1997), tabu search (Rochat, 1995) (Xu, 
1996) (Taillard, 1997), constraint programming (Shaw, 
1998), granular tabu search (Toth, 1998), ant colony 
optimization (Gambardella, 1999)). 

There are also some applications of evolutionary 
computation (EC) techniques to the VRP, more 
specifically to some of its variants. However, when 
applied alone, their success is limited. This led 

researchers to rely on hybrid approaches that combine the 
power of an EC algorithm with the use of specific 
heuristics (see, e.g., (Thangiah, 1995)) or to simplify the 
problem. One common simplification is to pre-set the 
number of vehicles that is going to be used in the solution 
(Zhu, 2000), (Louis, 1999). 

In this paper we present two EC approaches to an instance 
of the generic VRP. To our knowledge this is the first 
attempt to apply non-specific EC methods to the 
wide-ranging version of this problem (i.e., a version that 
does not consider any kind of simplification). Our first 
approach uses a standard genetic algorithm (GA), whilst 
in the second we resort to a coevolutionary model. 

Coevolutionary algorithms are an appealing and useful 
extension to the standard EC methods. The most 
important difference when considering this alternative 
class of algorithms is that the fitness of an individual is a 
function of the other individuals in the population. There 
are two basic classes of coevolutionary algorithms 
(Wiegand, 2001):  

• Competitive coevolution, in which the fitness of an 
individual is determined by a series of 
competitions with other individuals. See, e.g., 
(Rosin, 1997) or (Jensen, 2001) as examples of this 
approach.  

• Cooperative coevolution, in which the fitness of an 
individual is determined by a series of 
collaborations with other individuals. Work 
described in (Potter, 2000) is an example of this 
methodology.  

We follow the cooperative coevolutionary model. 

The paper has the following structure: in Section 2 we 
give a formal definition of the VRP problem and of some 
of its most popular variants. Section 3 comprises a 
description of our standard GA approach to the VRP, 
whilst in section 4 we describe the coevolutionary model 
proposed. Next, in section 5, we present the experimental 
results achieved with both approaches. Section 6 is 
devoted to the analysis of the influence of the use of 
heuristics when searching for good solutions. Finally in 
Section 7 we draw some overall conclusions. 



2 THE VEHICLE ROUTING PROBLEM  

The most general version of the VRP is the Capacitated 
Vehicle Routing Problem (CVRP), which can be formally 
described in the following way. There is one central depot 
0, which uses k independent delivery vehicles, with 

identical delivery capacity C , to service demands id  

from n customers, i = 1, …, n. The vehicles must 
accomplish the delivery with a minimum total length cost, 

where the cost ijc  is the distance from customer i to 

customer j, with i, j ∈ [1, n] . The distance between 
customers is symmetric, i.e., ci j=cji and also ci i=0. A 
solution for the CVRP would be a partition {R1,…,Rk} of 
the n demands into k routes, each route Rq satisfying 

Cd
qRp p ≤� ∈

. Associated with each Rq is a permutation of 

the demands belonging to it, specifying the delivery order 
of the vehicles (Ralphs, 2001). In figure 1 we present an 
illustration of the problem, viewed as a graph, where the 
nodes represent the customers. 
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Figure 1: Vehicle Routing Problem 

One of the most important extensions of the CVRP is the 
Vehicle Routing Problem with Time Windows. This 
variant introduces an additional constraint type: each 
costumer must be served within a specific time window. 
Thus, at each node, the service beginning time must be 
greater than or equal to the beginning of the time window, 
and the arrival time must be lower than or equal to the end 
of the time window. When the arrival time is less, the 
vehicle has to wait. Other variants of the problem are 
multi-depot, fixed routes, fixed areas, etc. 

3 A STANDARD GA APPROACH TO 
THE VRP 

Our model can be viewed as an extension of the 
traditional GA approaches to the TSP problem. The main 
differences lies on the representation of the candidate 
solutions and their interpretation.  

Concerning the representation, we use a fixed size 
chromosome. Possible values for genes are: an integer 

representing a customer node or a special blank symbol. 
This blank symbol acts as a separator between routes. If, 
in a chromosome, there are two or more consecutive 
blanks they are interpreted as being a single separator 
between two routes. Since we don’t know beforehand 
how many vehicles will be used in the optimal solution 
we must include a safe number of blank genes. Typically 
we set this number to the number of nodes divided by 
two.  

As genetic operators we use two standard approaches for 
representations involving order: the partially mapped 
crossover (PMX) operator and the swap mutation 
operator. (see, e.g., (Michalewicz, 1992) 

We will resort to an example in order to better describe 
our proposal. The chromosome presented in figure 2 
codifies a solution equivalent to the one presented in 
figure 1. The first vehicle starts at the depot (node 0), 
proceeding to node 3, next to node 2, then to 7. The 
following gene is a blank, meaning that this vehicle won’ t 
service any other costumers, hence returning to the depot.  
The next three genes in the chromosome specify the route 
of the second vehicle (0-8-6-5-0). Two consecutive blank 
genes follow this route. The next genes represent the route 
of the third vehicle, which is 0-4-9-1-10-0. 

 

3 2 7  8 6 5   4 9 1 10   
Figure 2: An example of a chromosome for the standard 

GA approach. 

Some routes in the chromosome may cause the vehicle to 
exceed its capacity. When this happens, and to guarantee 
that the interpretation is always a valid candidate solution, 
we perform the following modification: the route that 
exceeds the vehicle capacity is split in several ones. 
Assuming that the original route is composed by the 
following ordered set of nodes { 1, …, i, i+1, …, n} , and 
that the vehicle capacity is exceeded at node i+1, it will be 
divided in two parts: {1, …, i}  and { i+1, …, n} . If 
necessary, further divisions can be made in the second 
part. Notice that these changes only occur at the 
interpretation level and, therefore, the information 
codified in the chromosome is not altered.  

4 A COEVOLUTIONARY APPROACH 
TO THE VRP 

When using cooperative coevolutionary algorithms 
(CCAs) the standard approach is to identify a natural 
decomposition of the problem into subcomponents. Each 
component is assigned to a subpopulation such that 
individuals in a given subpopulation represent potential 
components to the global problem. Then each component 
is evolved simultaneously, although isolated from the 
others. The only period when there is any collaboration is 
during the evaluation phase. In order to evaluate the 
fitness of a given individual, collaborators are selected 
from other subpopulations, so that a complete solution 
can be formed. 



A simple algorithm of a CCA can be defined as follows: 

 

For each subpopulation S Do: 

Initialise population Ps (0) 

Evaluate all individuals from Ps (0) 

End_For 

While termination condition not met Repeat: 

For each subpopulation S Do: 

   Select a set of parents Xs(t) for next generation 

Apply genetic operators to individuals of Xs(t) 
obtaining a set of descendants Ds(t) 

Evaluate individuals from Ds(t) 

Combine Ps(t) and Ds(t) obtaining Ps(t+1) 

End_For 

End_While 

 

Computing the fitness of an individual is the most 
important part of a CCA. One major question is the issue 
of how collaborators are chosen. Three decisions need to 
be considered (Wiegand, 2001): 

• Collaboration pool size: number of collaborators 
per subpopulation to use for a given fitness 
evaluation.  

• Collaborator selection pressure: the degree of 
greediness of choosing a collaborator. How do we 
select individuals to collaborate? The best ones, 
the worst ones, in a random way? 

• Collaboration credit assignment: Given multiple 
collaborations, how is fitness assigned to the 
individual being evaluated? 

In our approach we use two subpopulations. Individuals 
from the first subpopulation describe the number of nodes 
of each route, determining the size of each partition Rq. 
On the other hand, individuals from the second regulate 
the composition of each partition and also the order by 
which the nodes are visited.  

Figure 3 portrays two individuals whose joint 
interpretation results in a candidate solution similar to the 
one presented in figure 1. Individual A is from the first 
subpopulation, whilst individual B is from the second. 

The interpretation is done in the following way: the value 
of the first gene of individual A determines how many 
nodes belong to the route of the first vehicle. In this 
example, it has 3 nodes. Then, the first three genes from 
individual B specify the ordered route: { 0, 3, 2, 7, 0} . 
Other routes are obtained in a similar way. In this 
situation, the route of the second vehicle has 3 nodes (as 
determined by the second gene from A) ordered as 
follows: { 0, 8, 6, 5, 0}  and the route of the third vehicle 
has 4 nodes: {0, 4, 9, 1, 10, 0} .  At this point we see that 

the information belonging to individual B has already 
been distributed by the three routes. When this happens, 
interpretation is concluded (we already have a solution). 
Just like it can be confirmed there is information in 
chromosome A that is not necessary to obtain a solution 
(forth and fifth genes, in this example). 
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Figure 3: On the left, an individual from the first 

subpopulation, on the right, an individual from the 
second. 

Like in the previous approach, we split routes that exceed 
vehicle capacity, to guarantee that the interpretation 
always yields a valid candidate solution.  

Just like we mentioned before, in the generic version of 
the VRP there is no way of predetermining the optimal 
number of vehicles, so we decided to handle this problem 
by setting the size of the individuals of the first 
subpopulation to the number of nodes divided by two. 
Maximum route length is also set to this value. As genetic 
operators, for that subpopulation, we use two-point 
crossover and uniform mutation (see, e.g., (Michalewicz, 
1992). 

The size of the individuals of the second subpopulation is 
fixed and equal to the number of nodes. Again, we use 
PMX crossover and swap mutation. 

5 EXPERIMENTAL RESULTS   

To evaluate our approaches we tested them on an instance 
of the VRP from Set A of (Augerat, 1995), named A-n32-
k5. This instance comprises 32 nodes, with different 
demand values ranging from 1 to 24. The vehicle capacity 
is 100. The optimal solution uses five vehicles, and has a 
total cost of 784. 

5.1 STANDARD GA APPROACH 

For the results presented in this section we used the 
following experimental settings: population size 100, 
crossover rate 0.7, mutation rate 0.05, tournament 
selection with tournament size 5, and elitist strategy with 
a 5% window. We performed 30 individual runs. Each 
run took 1 hour of CPU time, which is, for this approach, 
roughly equivalent to 46500 generations.  

In Table 1 we summarize the results achieved, presenting 
the best individual found on the 30 runs and the average 
of the best individuals of these runs. We also present the 
time it took, both to find the best individual and the 
average of the best individuals of all runs. 



Table 1: Summary of the Standard GA Results 

 Best Average 

   
Cost 829 911.9 

Time 3286.0 2079.6 

5.2 COEVOLUTIONARY APPROACH 

We used a subpopulation size of 100 and the same 
settings as above. Fitness was assigned as follows: for 
each individual of each subpopulation we chose N 
individuals of the other subpopulation (the pool size), one 
being the best of the previous generation and the others 
N-1 chosen randomly. The fitness of the individual is 
equal to the cost of the best of these candidate solutions. 
Results presented in this section were obtained with the 
following values of N: {2, 3, 5} . In table 2 we summarize 
the results obtained. 

Table 2: Summary of the coevolutionary Results 

 Best Average 

Pool Size 2 3 5 2 3 5 

       
Cost 805 852 837 930.3 924.9 913.1 

Time 252.4 319.9 3001 936.4 603.0 852.4 

5.3 ANALYSIS OF THE RESULTS 

From the experimental results presented so far one can 
conclude that the proposed approaches are able to reach 
good solutions to the VRP problem. Nevertheless, they 
didn’ t find the optimal solution. The best individual found 
has an overall cost of 805, whilst the optimal solution has 
an overall cost of 784. It’s interesting to notice that the 
best individual was found using the coevolutionary 
approach with a pool size of 2, which were the settings 
that gave a worst average result. 

In terms of the average of the best individuals found, the 
standard GA and the coevolutionary approach with pool 
size equal to 5 gave the best results (911 and 913.1, 
respectively). It is also visible that in the coevolutionary 
approach, as the pool size increases the results tend to 
improve. 

The chart in figure 4 shows the evolution of the cost of 
the best individual over time (averaged from a series of 30 
runs). As can be seen, on the beginning of the runs the 
cost drops dramatically (notice the logarithmic time 
scale). However after this initial drop, evolution becomes 
difficult. 

The convergence of the GA approach is slower. By 
looking at Tables 1 and 2 and to the time it took to find 
the best solution (both the overall best and average time 
taken) one can also conclude that the standard GA 
approach is the only one taking full advantage of the time 
assigned to each run (3600 seconds). 
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Figure 4: Evolution of the cost of the best individual of 

each generation (GA = GA approach, CEN = 
coevolutionary approach of pool size N). Results 

averaged from a series of 30 runs. 

A final note goes to the number of blank genes included 
in the chromosome of the standard approach and to the 
size of the individuals from the first subpopulation in the 
coevolutionary approach (the ones that specify routes’  
length). Given that the instance being evaluated has 32 
nodes, in the experiments we just described we used the 
value 16 for each one of the above-mentioned parameters.  

When we finished these tests we performed another small 
set of experiments with an important modification. The 
optimal solution for this instance requires 5 vehicles. This 
way we set the two parameters (blank genes in the 
standard GA approach and size of the chromosome of 
individuals from the first subpopulation in the 
coevolutionary model) to this value and repeated the 
experiments. One would expect that this might help the 
progress of both evolutionary algorithms. It is interesting 
to notice that this didn’ t happen in either of the 
approaches. The convergence rate proved to be very high, 
hindering the progression of the search and resulting in 
worst performance.  

6 IMPROVING THE RESULTS 
THROUGH THE USE OF 
HEURISTICS 

The results presented so far show that the application of 
EC techniques to the VRP problem is promising. It is also 
clear that there is still room for improvement. One of the 
alternatives is to include some sort of heuristics in the 
algorithms. To test the potential of this idea we extended 



the previously presented approaches by the inclusion of 
the K-nearest neighbor heuristic (KNN) (Mitchel, 1997), 
with K equal to 1. 

This heuristic was chosen, mostly, due to two factors: it’ s 
a generic and simple heuristic, not specifically designed 
to the VRP problem; also, it’ s very easy to implement and 
has little time complexity. 

The individuals are interpreted as described in Sections 3 
and 4. However, when computing the cost of each route, 
we proceed in the following way: 

a) Calculate the cost of the route based on the order 
expressed in the corresponding chromosome. 

b) Calculate the cost based on the ordering given by 
the KNN heuristic 

c) The cost of the route is the minimum of the costs 
resulting from a) and b) 

This is done for each vehicle route, not for the 
chromosome as a whole. Thus, it’ s possible to have 
solutions in which some vehicle routes are determined by 
the order expressed in the chromosome whilst others are 
determined by the order specified by the KNN heuristic. 

The chromosomes can be altered to include the changes 
introduced during the interpretation stage, resulting in a 
Lamarckian evolutionary model. Alternatively these 
changes can be forgotten. 

In the following sections we will present the results 
achieved by the inclusion of the KNN heuristic and 
compare them with the previously presented ones. 

6.1 EXPERIMENTAL RESULTS 

Table 3 summarizes the results achieved by the genetic 
algorithm extended by the inclusion of the KNN heuristic, 
whilst Table 4 presents the same information concerning 
the extension of the coevolutionary approach.  

Table 3: Summary of the GA + KNN Results 

 Best Average 

   
Cost 802 858.6 

Time 3098.2 1714.0 

 

Table 4: Summary of the coevolutionary + KNN Results 

 Best Average 

Pool Size 2 3 5 2 3 5 

       
Cost 799 813 812 882.3 882.8 882.0 

Time 664.2 147.4 1081 858.8 918.0 984.6 

The comparison of these results with the previous ones 
shows that the addition of the KNN heuristic improves the 
performance of the evolutionary algorithms. This is 
visible both in terms of the average of the best individuals 

found and overall best. In Figures 5 and 6 we present the 
charts of the evolution of the best individual (averaged 
over 30 runs), allowing to appreciate the effect of the 
introduction of KNN over time. It is clear from both 
charts that the KNN approaches perform consistently 
better during the entire extent of the runs. 

It’ s interesting to notice that in the KNN coevolutionary 
approach the pool size doesn’ t interfere with the average 
of the best individuals found. However, the overall best is 
found with pool size 2, which is also the experimental 
setting that has a lower computational cost. 
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Figure 5: Evolution of the cost of the best individual of 
each generation. Results averaged from a series of 30 

runs. 
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Figure 6: Evolution of the cost of the best individual of 
each generation. Results averaged from a series of 30 

runs. 



The chart presented in Figure 7 allows the comparison of 
both approaches when using the KNN heuristic. In what 
concerns the average of the best individuals found the GA 
approach achieves better results (858.6 vs. approximately 
882).  

There are also differences in terms of convergence, the 
GA approach converges slower, and doesn’ t appear to get 
stuck in local optima. Like before, it takes advantage of 
the full extent of the run. 
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Figure 7: Evolution of the cost of the best individual of 
each generation. Results averaged from a series of 30 

runs. 

7 CONCLUSIONS 

In this paper we presented some preliminary results 
concerning a comparative study among three classes of 
evolutionary algorithms to deal with the vehicle routing 
problem (VRP): the standard GA, a coevolutionary GA, 
and each of these algorithms enhanced by an heuristic. 
The VRP variant used is the most general one in the sense 
that the only constraint is the vehicles capacity. So there 
is no fixed number of vehicle or any time constraints 
involving the deliveries. 

 The results achieved are promising, as they show that EC 
techniques can deal in a satisfactory way with the 
problem. In particular, we showed that the inclusion of a 
simple, and non-specific, heuristic to generic EC 
techniques provides significant improvement of the 
results. The characteristics of our approach suggest that it 
shows good scalability, allowing their application to more 
complex instances of the problem, where more specific 
techniques may fail. 

Acknowledgments 

This work was partially financed by the Portuguese 
Ministry of Science and Technology under contract 
POSI/34493/SRI/2000. 

References 

Augerat, P., Belenguer, J.M., Benavent, E., Corberéan, 
A., Naddef, D., Rinaldi, G., Computational Results with a 
Branch and Cut Code for the Capacitated Vehicle 
Routing Problem, Research Report 949-M, Université 
Joseph Fourier, Grenoble, France, 1995. 

Clark, G., Wright, J. W., Scheduling of vehicles from a 
central depot to a number of delivery points, Operations 
Research, 12, pp. 568-581, 1964. 

Fisher, M. L., Jaikumur, R., A generalized assignment 
heuristic for vehicle routing, Network 11, pp. 109-124, 
1981.  

Fisher, M. L., Optimal solution of vehicle routing 
problems using minimum K-trees, Operations Research, 
Vol. 42, pp. 626-642, 1994.  

Gambardella, L. M., Taillard, E., Agazzi, G., MACS-
VRPTW: A Multiple Ant Colony System for Vehicle 
Routing Problems with Time Windows , In D. Corne, M. 
Dorigo and F. Glover, editors, New Ideas in Optimization. 
McGraw-Hill, London, UK, pp. 63-76, 1999. 

Jensen, M. T., Finding Worst-Case Flexible Schedules 
using Coevolution, In: Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO-2001), 
p. 1144-1151, 2001. 

Kindervater, G. A. P., Savelsbergh, M. W. P., Vehicle 
routing: handling edge exchanges, E. H. Aarts, J. K. 
Lenstra, eds., Local Search in Combinatorial 
Optimization.  John Wiley & Sons, Chichester, UK, pp. 
311–336, 1997. 

Louis, S., Yin, X., Yuan, Z, Multiple Vehicle Routing with 
Time Windows Using Genetic Algorithms, In: Proceedings 
of the Congress of Evolutionary Computation, pp. 
1804-1808,1999.   

Michalewicz, Z. Genetic Algorithms + Data Structures = 
Evolution Programs, Springer-Verlag, 1992.  

Mitchel, T., Machine Learning, McGraw-Hill, pp. 
230-233, 1997. 

Potter, M. A., De Jong, K.. Cooperative Coevolution: An 
Architecture for Evolving Coadapted Subcomponents. 
Evolutionary Computation, 8(1), pp. 1-29. MIT Press, 
2000. 

Ralphs, T. K., Kopman, L., Pulleyblank, W., Trotter, L. 
E., On the Capacitated Vehicle Routing Problem, To be 
published on Mathematical Programming, 2001. 

Rochat, Y., Taillard, É. D., Probabilistic Diversification 
and Intensification in Local Search for Vehicle Routing, 
Journal of Heuristics 1, pp. 147-167, 1995.  



Rosin, C. D., Belew, R. K., New Methods for Competitive 
Coevolution, Evolutionary Computation, vol 5, nr 1, pp 
1-29, 1997. 

Shaw, P., Using Constraint Programming and Local 
Search Methods to Solve Vehicle Routing Problems, 
Proceedings of the Fourth International Conference on 
Principles and Practice of Constraint Programming (CP 
'98), M. Maher and J.-F. Puget (eds.), Springer-Verlag, 
pp. 417-431, 1998.  

Taillard, É. D., Badeau, P., Gendreau, M., Guertin, F., 
Potvin, J.-Y., A Tabu Search Heuristic for the Vehicle 
Routing Problem with Soft Time Windows, Transportation 
Science 31, pp. 170-186,1997. 

Taillard, É. D., Parallel I terative Search Methods for 
Vehicle Routing Problems, Networks 23, pp. 661-673, 
1993. 

Thangiah, S. R., Vehicle routing with time windows using 
Genetic Algorithms, Application and Book of Genetic 
Algorithms: New Frontiers, Volume II. Chambers, L. 
(ed),  pp. 253-277, CRC Press, 1995. 

Toth, P., Vigo, D., The Granular Tabu Search (and its 
Application to the Vehicle Routing Problem), Technical 
Report, Dipartimento di Elettronica, Informatica e 
Sistemistica, Università di Bologna, Italy, 1998.  

Wiegand, R. P., Liles, W. C., De Jong, K. A., An 
Empirical Analysis of Collaboration Methods in 
Cooperative Coevolutionary Algorithms, In Proceedings 
of the Genetic and Evolutionary Computation Conference 
(GECCO), pp. 1235–1245, Morgan Kaufmann Publishers, 
2001. 

Xu, J., Kelly, J., A Network Flow-Based Tabu Search 
Heuristic for the Vehicle Routing Problem, Transportation 
Science 30, pp. 379-393, 1996. 

Zhu, K., A New Genetic Algorithm for VRPTW, 
International Conference on Artificial Intelligence, Las 
Vegas, USA, 2000.  


